
A Workload Characterization of Elliptic Curve Cryptography Methods
in Embedded Environments

I. Branovic, R. Giorgi, E. Martinelli
University of Siena

Via Roma 56 - Siena, Italy
{branovic,giorgi,martinelli}@dii.unisi.it

Abstract
Elliptic Curve Cryptography (ECC) is emerging as

an attractive public-key system for constrained
environments, because of the small key sizes and
computational efficiency, while preserving the same
security level as the standard methods
We have developed a set of benchmarks to compare
standard and corresponding elliptic curve public-key
methods. An embedded device based on the Intel XScale
architecture, which utilizes an ARM processor core was
modeled and used for studying the benchmark
performance. Different possible variations for the
memory hierarchy of such basic architecture were
considered. We compared our benchmarks with
MiBench/Security, another widely accepted benchmark
set, to provide a reference for our evaluation.
We studied operations and impact on memory of Diffie-
Hellman key exchange, digital signature algorithm,
ElGamal, and RSA public-key cryptosystems. Elliptic
curve cryptosystems are more efficient in terms of
execution time, but their impact on memory subsystem
has to be taken into account when designing embedded
devices in order to achieve better performance.

1. Introduction
Cryptography algorithms are split into two

categories: private-key (symmetric) and public-key
(asymmetric). Internet security protocols (e.g. SSL,
IPSec) employ a public-key cryptosystem to exchange
private keys and then use faster private-key algorithms
to ensure confidentiality of streaming data. In private-
key algorithms, communicating parties share a common
private key, which is used to transform the original
message into a ciphered message. The ciphered
message is communicated to another side, and the
original message is decrypted by using the same private
key. Public-key systems, on the other side, do not
require exchange of keys. The public key, known to all,
can be used for encrypting messages. However, the
resulting ciphertext can only be decrypted using the
receiver's private key.
Elliptic Curve Cryptography has attracted attention due
to the reduced key size at equivalent levels. Because of
the favorable characteristics, it has been incorporated

into two important public-key cryptography standards,
FIPS 186-2 [NIST00] and IEEE-P1363 [IEEE1363-00].
These standards specify how to use elliptic curves over
prime fields GF(p) and binary fields GF(2m);
recommended curves have well-studied properties that
make them resistant to known attacks.
Due to expected advances in cryptanalysis and
increases in available computing power, both private
and public key sizes must grow over time to offer
acceptable security. Table 1 [NIST00], [Blake03] shows
expected key-size growth for various private and
public-key cryptosystems:

Table 1. Equivalent key size for some
cryptosystems.

Public key
ECC key length

Prime field Binary field

RSA key length
for approximate

equivalent
security

private key
length for

approximate
equivalent

security
192 163 1024 80
224 233 2048 112
256 283 3072 128
384 408 7680 192
521 571 15360 256

We study elliptic curve analogs of following algorithms
for recommended curves in both types of fields:

• Diffie-Hellman key algorithm, used for secure
exchange of private keys [Diffie76]

• Digital signature algorithm, used for ensuring
authenticity of data [NIST00]

• ElGamal algorithm, used for encrypting data
[ElGamal85].

We compared elliptic curve versions of public-key
algorithms with corresponding standard versions. We
also included RSA public-key algorithm [RSA02], since
it is a de-facto standard in this area. To provide a
refernce for our evaluation, we compared our
benchmarks with MiBench/Security, another widely
accepted benchmark set for embedded systems
[Guthaus01].
The rest of the paper is organized as follows: in Section
2, we give information necessary for understanding
public-key cryptography methods, as well as principles
of ECC. Section 3 gives details on benchmarks used,

 ACM SIGARCH Computer Architecture News 27 Vol. 32, No. 3, June 2004

Section 4 outlines the methodology, while in Section 5
we present a workload characterization of public-key
methods with special emphasis on memory
performance. Section 6 presents related work in this
area, and Section 7 concludes.

2. Public-Key Algorithms
In a public-key cryptosystem, the private key is

always linked mathematically to the public key.
Therefore, it is always possible to attack a public-key
system by deriving the private key from the public key.
The defense against this is to make the problem of
deriving private key as difficult as possible.

2.1. Standard Public-Key Methods
Diffie-Hellman key exchange is used to establish a

shared key between two parties over a public channel.
Although it is the oldest proposal for eliminating the
transfer of secret keys in cryptography, it is still
generally considered to be one of the most secure and
practical public-key schemes. The security of Diffie-
Hellman relays on difficulty of calculating discrete
logarithms (given an element α in a finite field Fp and
another element y in the sam field, find an integer x
such that

e

p

xy α=).

Digital signature of a document is a cryptographic
means for ensuring the identity of the sender and the
authenticity of data. Digital signature of a document is
information based on both the document and signer’s
private key. The National Institute of Standards and
Technology (NIST) published the Digital Signature
Algorithm (DSA) in the Digital Signature Standard
[NIST00]. This standard requires use of Secure Hash
Algorithm (SHA), specified in the Secure Hash
Standard [NIST95]. The SHA algorithm takes a long
message and produces its 160-bit digest; this method is
known as hashing. Hash function is hard to invert,
which means that given a hash value, it is
computationally extremely difficult to find the original
message. The message digest is then digitally signed
using the private key of the signer; signature can be
verified using the sender’s public key.
RSA cryptosystem [RSA02] is used in the most popular
applications, such as SSL, IPSec, e-commerce systems,
e-mail systems (PGP, S/MIME); it has practically
become the standard for public-key encryption. RSA
encryption is based on the fact that the computational
difficulty of finding the private key is equivalent to
factoring an integer, which is computationally
impossible if it is long enough. RSA key sizes that
today offer acceptable level of security are 1024 bits
and longer. Public exponent in common use is 216 + 1
(65537), since it improves the efficiency of algorithm.
ElGamal is a public-key cryptosystem often used as an
alternative to RSA. The encryption algorithm is based

on discrete logarithm problem, e.g. finding modular
inverses of exponentiations in finite field [ElGamal85].

2.2 Elliptic Curve Methods
The fundamental operation in RSA and Diffie-Hellman
is modular integer multiplication. Unlike standard
public-key methods that operate over integer fields, the
elliptic curve cryptosystems operate over points on an
elliptic curve. Cryptographic algorithms based on
discrete logarithm problem can be efficiently
implemented using elliptic curves. However, the core of
elliptic curve arithmetic is an operation called scalar
point multiplication, which computes Q = kP (point P
multiplied by an integer k gives a point Q on the same
elliptic curve). The security of ECC lies in the fact that
given P and Q = kP , it is hard to find k; this problem
has similar difficulty as solving discrete logarithm in
integer fields, although at the time being this operation
seems harder in elliptic curve groups. Consequently, the
same level of security is obtained with smaller key sizes
compared with standard public-key methods (Table 1).
While it is possible to carry out a brute force approach
of computing all multiples of P to find Q, by choosing
to operate over a large field, for instance binary field
GF(2163), k is so large that it becomes infeasible to
determine k this way. The (large) random integer k is
kept as the private key, while the result Q serves as the
corresponding public key.
Elliptic curve can be defined over any field, but for
cryptographic purposes, we are interested in elliptic
curves over finite fields. Finite fields commonly in use
in cryptography are prime and binary fields. In binary
field, elements can be represented using polynomial or a
normal basis. As it is well known that polynomial basis
yields more efficient software implementations
[Hankerson00], we used it in developing our
benchmarks. Since not every elliptic curve offers strong
security properties, standards organizations like NIST
have published a set of recommended curves [NIST00].
The use of these curves is also recommended for easier
interoperability between different implementations of a
security protocol. For binary polynomial fields, two
curves are recommended for key sizes of 163, 233, 283,
409, and 571 bits; for prime fields, for each key size
(192, 224, 256, 384, and 521), one curve is
recommended.
In the polynomial representation of binary field, each
field element can be viewed as polynomial whose
coefficients are either 0 or 1. Polynomial addition is
defined as simple component-wise XOR of the two
polynomials. Polynomial multiplication is also
component-wise; the key difference is that
multiplication may produce a product polynomial of
degree that is greater or equal to the field size. In such
case, the product needs to be reduced by the irreducible

 ACM SIGARCH Computer Architecture News 28 Vol. 32, No. 3, June 2004

polynomial (usually trinomial or pentanomial), defined
in [NIST00]. Operations on elliptic curves in binary
fields imply using finite field operations. For example,
doubling of point in a binary field requires ten finite
field operations: two multiplications, one squaring, six
additions, and one field inversion [Menezes01].

3. Benchmark description
In typical portable wireless systems, cryptographic

functions are performed in software due to the ease of
implementation and flexibility that accompanies the use
of software. The various public key cryptography
schemes require the use of arithmetic algorithms that
operate on operands that are much larger than the
microprocessor’s word size (e.g., 1024-bit operands on
a 32-bit architecture). One common approach for
implementing public-key cryptography is to use
available open source libraries that offer all basic
cryptographic functions. Our benchmarks were written
by using MIRACL C library procedures for big integer
arithmetic [Miracl02]. The MIRACL library consists of
over 100 routines that cover all aspects of multi-
precision arithmetic and offers procedures for finite-
field elliptic curve operations. All routines have been
optimized for speed and efficiency, while at the same
time remaining standard, portable C. Algorithms used to
implement arithmetic on the big data type are taken
from [Knuth81].
The benchmarks we setup are listed in Table 4. The use
of elliptic curve cryptography also involves choosing a
finite field, a specific curve on it, and a base point on
the chosen curve. The finite fields and the elliptic
curves used in our benchmarks are chosen according to
NIST standard [NIST00]. Elliptic-curve benchmarks in
graphs and tables have the following notation:

git number>
The abbreviation b denotes an elliptic curve over binary
field, while p denotes use of a prime field. Three-digit
number indicates the size of the field; for example, b163
denotes the use of GF(2163) binary field, while p384
denotes prime field with binary length of prime p equal
to 384 (also indicated as ||p||). Therefore, the ec-
dh.p192, ec-dh.p224, ec-dh.p256, ec-dh.p384, and ec-
dh.p521 represent results of simulating elliptic curve
Diffie-Hellman key exchange.
NIST curves over a prime field GF(p) are of form:

 where b random1

while the curves over GF(2m) are of the form

with b random2.

<benchmark>.<b | p><three di

bxxy +−= 332

bxxxyy ++=+ 232

1 Prime field operations are defined as integer addition and
multiplication modulo p.

The elliptic curve methods of the benchmark use
parameter files for initializing the curve, setting the base
point on the curve, and setting the irreducible
polynomial for multiplication in binary fields. An
example of the structure of prime fields’ parameter files
(p192.txt, p224.txt, p256.txt, p384.txt, p521.txt) is given
in Table 2, while Table 3 gives the typical structure of
binary field parameter file. For standard cryptography
benchmarks we use the following notation:

<benchmark>.<key_length>

Table 2. Example of the parameter file
for a prime field GF(p), ||p||=384.

prime p
(dec)

39402006196394479212279040100143613805079
73927046544666794829340424572177149687032

9047266088258938001861606973112319

curve term
b (hex)

b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8
141120314088f5013875ac656398d8a2ed19d2a85c

8edd3ec2aef
base point
x coord.

(hex)

aa87ca22be8b05378eb1c71ef320ad746e1d3b628b
a79b9859f741e082542a385502f25dbf55296c3a545

e3872760ab7
base point
y coord.

(hex)

3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a
147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d

7c90ea0e5f

Table 3. Example of the parameter file
for a binary field GF (2283).

degrees of the
irreducible

polynomial terms
283 12 7 5 0

curve term b
(hex)

27b680ac8b8596da5a4af8a19a0303fca97f
d7645309fa2a581485af6263e313b79a2f5

 base point
coordinate x

(hex)

5f939258db7dd90e1934f8c70b0dfec2eed2
5b8557eac9c80e2e198f8cdbecd86b12053

base point
coordinate y

(hex)

3676854fe24141cb98fe6d4b20d02b4516ff7
02350eddb0826779c813f0df45be8112f4

The following benchmarks are representative of
commonly used public-key methods:
• dh (Diffie-Hellman key exchange). It reads a prime

suitable for Diffie-Hellman from a file, calculates
shared key and writes it into a file.

• ds (digital signature). It reads three integers
suitable for generating keys from file, generates
public and private keys and writes them into files,
calculates message digest of a file given as
argument using the private key, writes signature
into a file, and verifies the signature of the file
using public key.

2 In case of binary field, an irreducible polynomial is used when the
degree of multiplication product polynomial is greater than field size.

ACM SIGARCH Computer Architecture News 29 Vol. 32, No. 3, June 2004

Table 4. Our public-key benchmark suite.

Benchmark acronym Benchmark name Input set description Example input set
value

dh Diffie-Hellman key exchange key length 1024
ec-dh Elliptic curve Diffie-Hellman key exchange elliptic curve parameter file b163.txt

ds Digital signature of a file key length, file to sign 2048, input_small.asc
ec-ds Elliptic curve digital signature of a file elliptic-curve parameter file, file to sign b163.txt, input_small.asc

rsa RSA encryption/decryption with exponent
65537 key length, small text file 1024, test.asc

elg ElGamal key generation,
encryption and decryption key length, small text file 1024, test.asc

ec-elg Elliptic curve ElGamal
key generation, encryption and decryption

elliptic-curve parameter file, small text
file p192.txt, test.asc

• rsa (RSA encryption/decryption with exponent
216+1). Reads 1024-bit public key from a file,
encrypts file passed as argument, writes ciphered
text into a file, reads private key from file, reads
ciphered content from a file and decrypts it using
private key.

• elg (ElGamal key generation, encryption and
decryption). It reads a suitable prime from a file
and generates a public key and a private key.
Encrypts file passed as argument, writes ciphered
text into a file, reads private key from file, and
finally decirypts the content of a file using private
key.

• ec-dh (elliptic curve Diffie-Hellman). It reads
parameter file for elliptic curve, calculates shared
key and writes it into a file.

• ec-ds (elliptic curve digital signature). It reads
private key and elliptic curve parameters from
files, calculates message digest of file given as
argument, writes signature to a file, and
immediately verifies the signature using the public
key.

• ec-elg (elliptic curve ElGamal key generation,
encryption and decryption). It generates public-
private key pair, encrypts the base point on a
curve, and then immediately decrypts it.

The source code of the benchmarks, as well as the
results of the experiments are available at
http://www.dii.unisi.it/~giorgi/basicrypt/.

4. Methodology

The performance evaluation of our public-key
cryptography benchmarks is done using the sim-
outorder simulators from ARM version of the
SimpleScalar toolset [Ss97]. The sim-outorder tool
performs a detailed timing simulation of the modeled
target. Simulation is execution driven, including
execution down any speculative path until the detection
of a fault, TLB miss, or branch misprediction. The
ARM target of the SimpleScalar set supports the ARM7
integer instruction set, with the pipeline and memory
system models for the Intel StrongARM SA-1110

[Austin02].
The simulated processor configuration is modeled after
Intel ARM Xscale architecture [Intel03], with details of
configuration given in Table 5. The sim-outorder tool
was modified to model mini-data (victim) cache of Intel
XScale architecture, in order to provide more accurate
memory modeling.
The benchmark code was compiled using arm-linux gcc
cross-compiler [Ss02], with optimization O2 enabled.
We compared the performance of our benchmarks with
MiBench/Security benchmarks [Guthaus01] (Table 6),
available at SimpleScalar Web site [Ss02]. MiBench is a
set of commercially representative, freely available
embedded programs. It offers different categories of
real-world embedded applications, among which is the
security category. MiBench security category is based
on private-key methods; the only public-key application
is PGP encryption/decryption, which uses RSA
algorithm for signing messages. Due to problems in
execution of PGP decode on SimpleScalar-ARM
simulator (unimplemented system calls), we simulated
only PGP encoding; we expect that PGP decode will
have similar performance [Guthaus01]. To make the
comparison as close as possible, we also used MiBench
input files (small ASCII text files) as input for our
benchmark simulations, where it was applicable. For
reasons of space, we reported only the results of the
simulations with shortest keys both for standard and
elliptic curve methods (e.g. 1024, b163, p192). The
results of simulations with various key lengths are
available at http://www.dii.unisi.it/~giorgi/basicrypt.
When presenting our benchmark statistics (Table 7),
source lines count included comments. Library files
actually used in each benchmark are individuated, and
their source lines counted. Static instruction count is
obtained by compiling C source and library files with –
S option, which produces assembly files, and by
counting number of lines in assembly files. Static
executable size is the number of bytes occupied on disk,
while all dynamic instruction counts, loads and stores
are obtained as sim-outorder simulation statistics.

 ACM SIGARCH Computer Architecture News 30 Vol. 32, No. 3, June 2004

5. Workload Characterization
In this Section, we characterize selected benchmarks
with particular emphasis on their memory behavior.
In Table 7, static and dynamic figures for standard
cryptography algorithms (dh, ds, elg) and their ECC
equivalent (ec-dh, ec-ds, ec-elg) are reported.
Additionally, we considered rsa algorithm as a
commonly used program for public-key
encryption/decryption.
To allow a fair comparison, we set the key length at a
value which implies the same level of security, as
discussed in Introduction (see Table 1): 1024 bits for
standard public-key cryptography, 192 bits for prime
field based ECC, and 163 bits for binary field based
ECC.
In order to provide a direct comparison with a widely
known benchmark suite, we also included the
MiBench/Security suite in our experimental setup.
Similarly to Table 7, we report in Table 8 statistics for
MiBench/Security. In this case, it has to be observed
that for some applications it would not make sense to
try a “same-level of security” comparison. For example,
sha is a hashing algorithm (no key length is involved).
Moreover the execution time of Blowfish algorithm (bf)
does not have a great dependence on key length. In fact,
Blowfish only uses the key (40 to 448 bits) to set up an
internal “working key” which is a fixed size structure
[Schneier96]. For Rijndael (rj), we do not have
knowledge of implementations that use less then 128
bits as key length. Therefore, the MiBench/Security
benchmark comparison has to be regarded as reference
to other algorithms commonly used in security
applications.
Initially, we analyzed the type and number of
operations. Almost all benchmarks (except ec-elg and
rj) have more than 50% integer ALU operations,
therefore they are very computation intensive. Using
ECC involves a lower number of dynamically executed
instructions (fourth column, Table 7), compared with
the same statistics for standard cryptography. The
percentage of memory operations is practically the same
for ECC algorithms and standard cryptography (Figure
3).
The number of memory references is higher in standard
cryptography than in ECC (last two columns, Table 7),
but a further analysis is needed to see if they really
contribute to the total execution time. In fact, the actual
performance of these benchmarks depends also on the
characteristics of instruction and data access patterns. In
particular, branch prediction schemes could have
different impact on performance. In Figure 4, 5, 6, and
7 we analyzed these factors.
Branch prediction is one of the factors influencing
instruction pattern generation. We simulated three
different schemes to see if we can achieve any

performance improvement: not taken, an 8k 2-level
predictor, and an 8k bimodal predictor. All predictors
used a 2k BTB except the not taken strategy. Figure 4
shows the results for these schemes. The most efficient
predictor is the bimodal. We used this predictor in the
rest of our study.
In Figure 5 – on the left – where we selected 24 cycles
for memory latency and 1KB for Level-1 Instruction
Cache and 1KB for Level-1 Data Cache, it appears that
ECC algorithms take comparable time to execute than
their corresponding standard version.
When memory latency is increased to 96 cycles (right
side of the Figure 5) the execution time is always higher
for ECC algorithms than in the case of standard
methods.
In Figure 5, we separated the contribution to execution
time due to memory stall (upper portion of bars).
Memory stalls account for a high percentage of the
execution time. For example, in case of 96 cycles, more
than 80% for ec-dh and ec-elg and more than 60% for
ec-ds. This means that a particular care has to be taken
for the memory subsystem, when considering the
implementation of ECC algorithms. This is particularly
true for mobile systems such as PDA or wireless
phones, where memory could be not very fast and
caches have a small size due to power constraints.
Even if ECC uses a lower number of memory
operations, the working set is larger or the locality of
instruction and data accesses is somewhat worse than
in standard cryptography.

Table 5. Simulated architecture.

Table 6. MIBENCH/SECURITY benchmarks.

Fetch queue (instructions) 4
Branch prediction 8k bimodal, 2k 4-way BTB

Fetch & Decode width 1
Issue width 1 (in order)

ITLB 32-entry, fully associative
DTLB 32-entry, fully associative

Functional units 1 int ALU, 1 int MUL/DIV
Instruction L1 cache 32 kB, 32-way

Data L1 cache 32 kB, 32-way
L1 cache hit latency 1 cycle
L1 cache block size 32 B

L2 cache none
Mini-data cache 2 kB

Memory latency (cycles) 24 , 96
Memory bus width (bytes) 4

Benchmark
acronym

Benchmark
name

Input set
description

Input set value

bf.enc Blowfish encrypt file to encrypt input_small.asc
bf.dec Blowfish decrypt file to decrypt output_small.enc
rj.enc Rijndael encrypt file to encrypt input_small.asc
rj.dec Rijndael decrypt file to decrypt output_small.enc
sha SHA file to hash input_small.asc

pgp.enc PGP encode small text file test.asc
pgp.dec PGP decode small text file test.enc

 ACM SIGARCH Computer Architecture News 31 Vol. 32, No. 3, June 2004

Both latter problems can be overcome through the use
of larger caches. Therefore, we considered a more
detailed analysis of the caches. As our goal is to analyze
this situation in the case of embedded systems, we setup
typical configurations of XScale processor, with only
Level-1 Instruction+Data split caches and no Level-2
cache.
To analyze the reasons of the higher stall time of Figure
5, we report in Figure 6 a detail of the Data and
Instruction MPI in the case of 1-Kbyte caches. The
Misses-Per-Instruction (MPI) metric is useful as it
provides a figure that is directly proportional to the CPI
(Cycles Per Instruction) contribution due to memory
stall [Kessler91]. To determine appropriate caches for
these algorithms, we considered cache sizes from 256-
bytes through 32 kB (Figure 7).
The cache size range is appropriate for our case as the
working set size is rather small (as typical in embedded
systems applications [Guthaus01]).

For a 32K-bytes cache size the MPI approaches zero.
To reduce the execution time, we should have at least
16 kB of instruction cache and 2 kB of data cache
available for these applications.
 If the constraints of our system design required a
slower (lower-power) main memory, the stall time due
to memory access could be even higher (Figure 5, right
portion, where main memory latency is 96 cycles).
For MiBench/Security, we observe that private-key
algorithms (bf and rj) have a much higher number of
data misses (Figure 6, 1 kB cache size), while the
public-key based pgp.enc nicely compares with same
values as the standard cryptography benchmarks that we
selected. For Instruction misses, MiBench private-key
algorithms (bf, rj) compare more directly with ECC
algorithms rather than with standard public-key
methods (dh, ds, elg).

Table 7. Public-key benchmark statistics (cache size 1 kB, memory latency 24, optimization O2).

Instruction count Dynamic executable size
(bytes) Benchmark name

Source lines
(application

+app_library) static
(application+app_library) dynamic

Static
executable
size (bytes) text data

Loads dynamic Stores dynamic

dh.1024 59/8365 214/20226 57,229,355 117,865 257,916 33,874,376 21,312,670 12,908,525
ec-dh.b163 99/10821 349/30884 23,101,446 120,094 258,236 33,874,792 6,288,459 3,782,031
ec-dh.p192 89/9356 306/21217 37,766,470 119,738 258,204 33,874,744 13,506,830 8,688,365

ds.1024 246/8522 806/20773 116,430,745 119,473 311,188 33,928,020 38,270,187 26,441,914
ec-ds.b163 330/10978 1157/31431 88,948,893 122,285 312,036 33,928,948 25,523,628 18,783,618
ec-ds.p192 330/9513 1009/24701 109,024,645 121,069 311,796 33,928,724 34,748,326 25,005,446
rsa.1024 215/8365 776/20226 30,812,587 118,319 232,038 33,848,504 11,147,041 6,824,826
elg.1024 192/8365 699/20226 231,072,055 118,127 259,388 33,876,060 87,473,709 52,744,618

ec-elg.b163 99/10821 384/30884 74,021,406 118,363 258,332 33,874,920 18,339,259 11,276,216
ec-elg.p192 97/9356 333/21217 71,062,489 118,395 258,284 33,874,904 18,048,378 11,258,092

Table 8. MIBENCH/SECURITY: Benchmark statistics (cache size 1 kB, memory latency 24, optimization O2).

Instruction count Dynamic executable size
(bytes) Benchmark name Source lines

static dynamic

Static
executable
size (bytes) text data

Loads dynamic Stores dynamic

bf.enc 2,302 7,749 52,410,681 968,691 190,900 33,808,760 19,971,638 17,391,227
rj.enc 1,773 12,134 24,907,400 998,449 199,364 33,874,440 10,829,945 3,789,546
sha 269 793 13,286,108 955,216 187,540 33,801,380 2,296,237 963,951
pgp 34,858 73,244 39,105,600 1,451,988 217,088 450,560 8,609,025 4,690,129

0%

20%

40%

60%

80%

100%

dh.1024
ecdh.b163
ecdh.p192

ds.1024
ecds.b163
ecds.p192

rsa.1024
elg.1024
ecelg.b163
ecelg.p192

bf.enc
bf.dec
rj.enc
rj.dec
sha
pgp.enc

load store uncond branch cond branch int computation

0,001

0,01

0,1

1

10

100

1000

dh.1024
ec-dh.b163
ec-dh.p192

ds.1024
ec-ds.b163
ec-ds.p192

rsa.1024
elg.1024
ec-elg.b163
ec-elg.p192

bf.enc
bf.dec
rj.enc
rj.dec
sha
pgp.enc

m
is

pr
ed

ic
tio

ns
 p

er
 1

00
0

in
st

ru
ct

io
ns

not taken 2level bimodal

Figure 3. Dynamic instruction class profile. Figure 4. Branch prediction rates per 1000

instructions for several schemes.

 ACM SIGARCH Computer Architecture News 32 Vol. 32, No. 3, June 2004

Total Execution Time (Billion Cycles) -
memory latency 24

0,0

0,2

0,4

0,6

0,8

1,0

dh.1024

ec-dh.b163

ec-dh.p192

ds.1024

ec-ds.b163

ec-ds.p192

rsa.1024
elg.1024

ec-elg.b163

ec-elg.p192

bf.enc
bf.dec
rj.enc
rj.dec
sha
pgp.enc

total memory stall time

perfect memory
execution time

Total Execution Time (Billion Cycles) -
memory latency 96

0,0

0,2

0,4

0,6

0,8

1,0

dh.1024

ec-dh.b163

ec-dh.p192

ds.1024

ec-ds.b163

ec-ds.p192

rsa.1024

elg.1024

ec-elg.b163

ec-elg.p192

bf.enc
bf.dec
rj.enc
rj.dec
sha
pgp.enc

total memory stall time

perfect memory
execution time

Figure 5. Total execution time (cache 1kB + 1kB) with memory latency of 24 and 96 cycles.

Instr cache misses per 1000 instructions
(L1 cache 1+1 kB) 129,36 128,42

0
10
20
30
40
50
60

dh.1024

ec-dh.b163

ec-dh.p192

ds.1024

ec-ds.b163

ec-ds.p192

rsa.1024
elg.1024

ec-elg.b163

ec-elg.p192

bf.enc
bf.dec
rj.enc
rj.dec
sha
pgp.enc

Data cache misses per 1000 instructions
 (L1 cache 1+1 kB) 157,8

156,8

45,7

45,7

0

1

2

3

4

5

6

dh.1024

ec-dh.b163

ec-dh.p192

ds.1024

ec-ds.b163

ec-ds.p192

rsa.1024

elg.1024

ec-elg.b163

ec-elg.p192

bf.enc
bf.dec
rj.enc
rj.dec
sha
pgp.enc

Figure 6. Instruction and data cache misses per 1000 instructions (L1 cache 1+1 KB)

and comparison with MiBench.

25
6

B
51

2
B

1
kB

2
kB

4
kB

8
kB

16
 k

B
32

 k
B

dh.1024
ec-dh.b163
ec-dh.p192

ds.1024
ec-ds.p192
ec-ds.b163
rsa
elg.1024
ec-elg.p192
ec-elg.b163

0
100
200
300

400

500

600

Instr cache misses per 1000 instructions

25
6

B
51

2
B

1
kB

2
kB

4
kB

8
kB

16
 k

B
32

 k
B

dh.1024
ec-dh.b163

ec-dh.p192
ds.1024

ec-ds.b163
ec-ds.p192

rsa
elg.1024

ec-elg.b163
ec-elg.p192

0

5

10

15

20

25

Data cache miss per 1000 instructions

Figure 7. Instruction and data cache misses per 1000 instructions.

 ACM SIGARCH Computer Architecture News 33 Vol. 32, No. 3, June 2004

6. Related Work
There is an intensive research ongoing in improving
the efficiency of elliptic curve operations, as well as
their performance analysis. A workload
characterization of some public-key and private-key
algorithms, including their elliptic-curve equivalents
for binary polynomial fields is found in [Fiskiran02].
They characterize operations in Diffie-Hellman,
digital signature, and ElGamal elliptic curve methods,
and demonstrate that all these algorithms can be
implemented efficiently with a very simple processor.
[Hankerson00] presents an extensive and careful study
of the software implementation of NIST-
recommended elliptic curves over binary fields. In
[Gupta02], the authors give the first estimate of
performance improvements that can be expected by
adding ECC support in SSL protocol.
In [Guthaus01] MiBench is compared with SPEC2000
benchmarks, which characterize a workload for
general-purpose computers. The common
characteristics of security applications are low cache
miss rate, more than 50% integer ALU operations, and
low level of parallelism. In [Milenkovic03], MiBench
suite and SimpleScalar simulator for ARM target are
used for a performance evaluation of typical cache
design issues for embedded systems.

7. Conclusions
The main contributions of our paper are: i) setup of
kernel benchmark set for studying elliptic curve and
standard public-key methods and ii) studying the
performance of public-key methods in embedded
environments.
We found that using ECC cryptography involves a
higher number of dynamically executed instructions.
However, the locality of instruction and data accesses
is worse than in standard cryptography.
Instruction and data locality matters to ECC
performance and appropriate caches should be
adopted in order to keep total execution time at
acceptable levels. The importance of memory stall and
thus the importance of appropriate caches is more
relevant in the case of ECC cryptography than in the
case of standard cryptography. Branch mispredictions
do not affect performance significantly, as the
percentage of branch instructions is decreased.

References
[Austin02] T. Austin, E. Larson, D. Ernst, “SimpleScalar:

An Infrastructure for Computer System Modelling”, IEEE
Computer , Volume 35, Issue: 2, Feb. 2002, pp. 59–67.

[Blake03] V. Gupta, S. Blake-Wilson, B. Moeller, C. Hawk,
“ECC Cipher Suites for TLS”, Internet draft, June 2003,

http://www.ietf.org/internet-drafts/draft-ietf-tls-ecc-03.txt.
[Diffie76] W. Diffie, M. E. Hellman, “New Directions in

Cryptography”, IEEE Trans. on Information Theory, Vol.
IT-22, Nov. 1976, pp. 644-654.

[ElGamal85] T. ElGamal, “A public key cryptosystem and a
signature scheme based on discrete logarithms”, IEEE
Trans. on Information Theory, Vol. 31, 1985, pp. 469-472.

[Fiskiran02] A. M. Fiskiran, R. B. Lee, “Workload
Characterization of Elliptic Curve Cryptography and other
Network Security Algorithms for Constrained
Environments”, Proc. of 5th IEEE Workshop on Workload
Characterization (WWC-5), Nov. 2002, pp. 127-137.

[Gupta02] V. Gupta, S. Gupta, S. C. Chang, “Performance
Analysis of Elliptic Curve Cryptography for SSL”,
WiSe’02, Atlanta, USA, 2002.

[Guthaus01] M. Guthaus, J. Ringerberg, T. Austin, T.
Mudge, R. Brown, “MiBench: A free, commercially
representative embedded benchmark suite”, Proc. of 4th
Workshop on Workload Characterization, Dec. 2001.

[Hankerson00] D. Hankerson, J. Lopez, A. Menezes,
“Software Implementation of Elliptic Curve Cryptography
over Binary Fields”, Proc. of CHES 2000 Conference,
Springer-Verlag, 2000, pp. 1-24.

[IEEE1363-00] IEEE Standard Specifications for Public-
Key Cryptography, 1363-2000, IEEE Computer Society,
Jan. 2000, http://grouper.ieee.org/groups/1363/

[Intel03] Intel Corporation, “The Intel Xscale
Microarchitecture Technical Summary”, ftp://download.
intel.com/design/intelxscale/XscaleDatasheet4.pdf

[Kessler91] R. E. Kessler, “Analysis of Multi-Megabyte
Secondary CPU Cache Memories”, Ph.D. Thesis, Univ. of
Wisconsin, Computer Sciences, Tech. Report 31032,
1991.

[Knuth81] D. E. Knuth, The Art of Computer Programming,
Vol. 2: Seminumerical Algorithms, Addison-Wesley, 1981.

[Menezes01] A. Menezes, Elliptic Curve Public Key Crypto-
systems, Kluwer Academic Publishers, Boston, USA,
2001.

[Milenkovic03] A. Milenkovic, M. Milenkovic, N. Barnes,
“A Performance Evaluation of Memory Hierarchy in
Embedded Systems”, Proc. of 35th SSST, Mar. 2003.

[Miracl02] Miracl big integer library Web site,
http://indigo.ie/~mscott/

[NIST95] NIST, Secure Hash Standard, FIPS pub180-1,
1995.

[NIST00] Digital Signature Standard, National Institute of
Standards and Technology, FIPS pub186-2, Jan. 2000.

[RSA02] RSA Laboratories’ FAQs about Today’s
Cryptography, http://www.rsasecurity.com/rsalabs/faq

[Schneier96] B. Schneier, Applied Cryptography –
Protocols, Algorithms and Source Code in C, 2nd ed.,
New York, J. Wiley & Sons, 1996.
[Ss97] D. C. Burger, T. M. Austin, “The SimpleScalar Tool
Set, Version 2.0”, Tech. Report CS-TR-97-1342, University
of Wisconsin-Madison, June 1997.
[Ss02] SimpleScalar LLC, http://www.simplescalar.com

 ACM SIGARCH Computer Architecture News 34 Vol. 32, No. 3, June 2004

	Bookmarks
	Bookmarks
	MEDEA03-ACM-CAN-PapersOK-Fixed.pdf
	Paper-D.pdf
	Abstract
	1. Introduction

	Bookmarks
	Bookmarks
	MEDEA03-ACM-CAN-PapersOK-Fixed.pdf
	Paper-D.pdf
	2. Public-Key Algorithms
	2.1. Standard Public-Key Methods
	2.2 Elliptic Curve Methods

	Bookmarks
	Bookmarks
	MEDEA03-ACM-CAN-PapersOK-Fixed.pdf
	Paper-D.pdf
	3. Benchmark description

	Bookmarks
	Bookmarks
	MEDEA03-ACM-CAN-PapersOK-Fixed.pdf
	Paper-D.pdf
	4. Methodology

	Bookmarks
	Bookmarks
	MEDEA03-ACM-CAN-PapersOK-Fixed.pdf
	Paper-D.pdf
	5. Workload Characterization

	Bookmarks
	Bookmarks
	MEDEA03-ACM-CAN-PapersOK-Fixed.pdf
	Paper-D.pdf
	6. Related Work
	7. Conclusions
	References

