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Abstract 
Elliptic Curve Cryptography (ECC) is emerging as 

an attractive public-key system for constrained 
environments, because of the small key sizes and 
computational efficiency, while preserving the same 
security level as the standard methods 
We have developed a set of benchmarks to compare 
standard and corresponding elliptic curve public-key 
methods. An embedded device based on the Intel XScale 
architecture, which utilizes an ARM processor core was 
modeled and used for studying the benchmark 
performance. Different possible variations for the 
memory hierarchy of such basic architecture were 
considered. We compared our benchmarks with 
MiBench/Security, another widely accepted benchmark 
set, to provide a reference for our evaluation. 
We studied operations and impact on memory of Diffie-
Hellman key exchange, digital signature algorithm, 
ElGamal, and RSA public-key cryptosystems. Elliptic 
curve cryptosystems are more efficient in terms of 
execution time, but their impact on memory subsystem 
has to be taken into account when designing embedded 
devices in order to achieve better performance.  

1. Introduction 
Cryptography algorithms are split into two 

categories: private-key (symmetric) and public-key 
(asymmetric). Internet security protocols (e.g. SSL, 
IPSec) employ a public-key cryptosystem to exchange 
private keys and then use faster private-key algorithms 
to ensure confidentiality of streaming data. In private-
key algorithms, communicating parties share a common 
private key, which is used to transform the original 
message into a ciphered message. The ciphered 
message is communicated to another side, and the 
original message is decrypted by using the same private 
key. Public-key systems, on the other side, do not 
require exchange of keys. The public key, known to all, 
can be used for encrypting messages. However, the 
resulting ciphertext can only be decrypted using the 
receiver's private key.  
Elliptic Curve Cryptography has attracted attention due 
to the reduced key size at equivalent levels. Because of 
the favorable characteristics, it has been incorporated 

into two important public-key cryptography standards, 
FIPS 186-2 [NIST00] and IEEE-P1363 [IEEE1363-00]. 
These standards specify how to use elliptic curves over 
prime fields GF(p) and binary fields GF(2m); 
recommended curves have well-studied properties that 
make them resistant to known attacks. 
Due to expected advances in cryptanalysis and 
increases in available computing power, both private 
and public key sizes must grow over time to offer 
acceptable security. Table 1 [NIST00], [Blake03] shows 
expected key-size growth for various private and 
public-key cryptosystems: 
   

Table 1. Equivalent key size for some 
cryptosystems. 

Public key 
ECC key length  

Prime field Binary field 

RSA  key length  
for approximate 

equivalent 
security 

private key 
length for 

approximate 
equivalent 

security 
192 163 1024 80 
224 233 2048 112 
256 283 3072 128 
384 408 7680 192 
521 571 15360 256 

 

We study elliptic curve analogs of following algorithms 
for recommended curves in both types of fields: 

• Diffie-Hellman key algorithm, used for secure 
exchange of private keys [Diffie76]  

• Digital signature algorithm, used for ensuring 
authenticity of data [NIST00] 

• ElGamal algorithm, used for encrypting data 
[ElGamal85]. 

We compared elliptic curve versions of public-key 
algorithms with corresponding standard versions. We 
also included RSA public-key algorithm [RSA02], since 
it is a de-facto standard in this area. To provide a 
refernce for our evaluation, we compared our 
benchmarks with MiBench/Security, another widely 
accepted benchmark set for embedded systems 
[Guthaus01]. 
The rest of the paper is organized as follows: in Section 
2, we give information necessary for understanding 
public-key cryptography methods, as well as principles 
of ECC. Section 3 gives details on benchmarks used, 

  ACM SIGARCH Computer Architecture News 27 Vol. 32, No. 3, June 2004



Section 4 outlines the methodology, while in Section 5 
we present a workload characterization of public-key 
methods with special emphasis on memory 
performance. Section 6 presents related work in this 
area, and Section 7 concludes.  

2. Public-Key Algorithms 
In a public-key cryptosystem, the private key is 

always linked mathematically to the public key. 
Therefore, it is always possible to attack a public-key 
system by deriving the private key from the public key. 
The defense against this is to make the problem of 
deriving private key as difficult as possible. 

2.1. Standard Public-Key Methods 
Diffie-Hellman key exchange is used to establish a 

shared key between two parties over a public channel. 
Although it is the oldest proposal for eliminating the 
transfer of secret keys in cryptography, it is still 
generally considered to be one of the most secure and 
practical public-key schemes. The security of Diffie-
Hellman relays on difficulty of calculating discrete 
logarithms (given an element α  in a finite field Fp and 
another element y in the sam  field, find an integer x 
such that 

e

p

xy α= ).  

Digital signature of a document is a cryptographic 
means for ensuring the identity of the sender and the 
authenticity of data. Digital signature of a document is 
information based on both the document and signer’s 
private key. The National Institute of Standards and 
Technology (NIST) published the Digital Signature 
Algorithm (DSA) in the Digital Signature Standard 
[NIST00]. This standard requires use of Secure Hash 
Algorithm (SHA), specified in the Secure Hash 
Standard [NIST95]. The SHA algorithm takes a long 
message and produces its 160-bit digest; this method is 
known as hashing. Hash function is hard to invert, 
which means that given a hash value, it is 
computationally extremely difficult to find the original 
message. The message digest is then digitally signed 
using the private key of the signer; signature can be 
verified using the sender’s public key. 
RSA cryptosystem [RSA02] is used in the most popular 
applications, such as SSL, IPSec, e-commerce systems, 
e-mail systems (PGP, S/MIME); it has practically 
become the standard for public-key encryption. RSA 
encryption is based on the fact that the computational 
difficulty of finding the private key is equivalent to 
factoring an integer, which is computationally 
impossible if it is long enough. RSA key sizes that 
today offer acceptable level of security are 1024 bits 
and longer. Public exponent in common use is 216 + 1 
(65537), since it improves the efficiency of algorithm.  
ElGamal is a public-key cryptosystem often used as an 
alternative to RSA. The encryption algorithm is based 

on discrete logarithm problem, e.g. finding modular 
inverses of exponentiations in finite field [ElGamal85]. 

2.2 Elliptic Curve Methods 
The fundamental operation in RSA and Diffie-Hellman 
is modular integer multiplication. Unlike standard 
public-key methods that operate over integer fields, the 
elliptic curve cryptosystems operate over points on an 
elliptic curve. Cryptographic algorithms based on 
discrete logarithm problem can be efficiently 
implemented using elliptic curves. However, the core of 
elliptic curve arithmetic is an operation called scalar 
point multiplication, which computes Q = kP (point P 
multiplied by an integer k gives a point Q on the same 
elliptic curve). The security of ECC lies in the fact that 
given P and Q = kP , it is hard to find k; this problem 
has similar difficulty as solving discrete logarithm in 
integer fields, although at the time being this operation 
seems harder in elliptic curve groups. Consequently, the 
same level of security is obtained with smaller key sizes 
compared with standard public-key methods (Table 1). 
While it is possible to carry out a brute force approach 
of computing all multiples of P to find Q, by choosing 
to operate over a large field, for instance binary field 
GF(2163), k is so large that it becomes infeasible to 
determine k this way. The (large) random integer k is 
kept as the private key, while the result Q serves as the 
corresponding public key. 
Elliptic curve can be defined over any field, but for 
cryptographic purposes, we are interested in elliptic 
curves over finite fields. Finite fields commonly in use 
in cryptography are prime and binary fields. In binary 
field, elements can be represented using polynomial or a 
normal basis. As it is well known that polynomial basis 
yields more efficient software implementations 
[Hankerson00], we used it in developing our 
benchmarks. Since not every elliptic curve offers strong 
security properties, standards organizations like NIST 
have published a set of recommended curves [NIST00]. 
The use of these curves is also recommended for easier 
interoperability between different implementations of a 
security protocol. For binary polynomial fields, two 
curves are recommended for key sizes of 163, 233, 283, 
409, and 571 bits; for prime fields, for each key size 
(192, 224, 256, 384, and 521), one curve is 
recommended.  
In the polynomial representation of binary field, each 
field element can be viewed as polynomial whose 
coefficients are either 0 or 1. Polynomial addition is 
defined as simple component-wise XOR of the two 
polynomials. Polynomial multiplication is also 
component-wise; the key difference is that 
multiplication may produce a product polynomial of 
degree that is greater or equal to the field size. In such 
case, the product needs to be reduced by the irreducible 
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polynomial (usually trinomial or pentanomial), defined 
in [NIST00]. Operations on elliptic curves in binary 
fields imply using finite field operations. For example, 
doubling of point in a binary field requires ten finite 
field operations: two multiplications, one squaring, six 
additions, and one field inversion  [Menezes01].  

3. Benchmark description 
In typical portable wireless systems, cryptographic 

functions are performed in software due to the ease of 
implementation and flexibility that accompanies the use 
of software. The various public key cryptography 
schemes require the use of arithmetic algorithms that 
operate on operands that are much larger than the 
microprocessor’s word size (e.g., 1024-bit operands on 
a 32-bit architecture). One common approach for 
implementing public-key cryptography is to use 
available open source libraries that offer all basic 
cryptographic functions. Our benchmarks were written 
by using MIRACL C library procedures for big integer 
arithmetic [Miracl02]. The MIRACL library consists of 
over 100 routines that cover all aspects of multi-
precision arithmetic and offers procedures for finite-
field elliptic curve operations. All routines have been 
optimized for speed and efficiency, while at the same 
time remaining standard, portable C. Algorithms used to 
implement arithmetic on the big data type are taken 
from [Knuth81].  
The benchmarks we setup are listed in Table 4. The use 
of elliptic curve cryptography also involves choosing a 
finite field, a specific curve on it, and a base point on 
the chosen curve. The finite fields and the elliptic 
curves used in our benchmarks are chosen according to 
NIST standard [NIST00]. Elliptic-curve benchmarks in 
graphs and tables have the following notation: 

git number> 
The abbreviation b denotes an elliptic curve over binary 
field, while p denotes use of a prime field. Three-digit 
number indicates the size of the field; for example, b163 
denotes the use of GF(2163) binary field, while p384 
denotes prime field with binary length of prime p equal 
to 384 (also indicated as ||p||). Therefore, the ec-
dh.p192, ec-dh.p224, ec-dh.p256, ec-dh.p384, and ec-
dh.p521 represent results of simulating elliptic curve 
Diffie-Hellman key exchange.  
NIST curves over a prime field GF(p) are of form: 

   where b random1

while the curves over GF(2m) are of the form 

with b random2. 

                                                

<benchmark>.<b | p><three di

bxxy +−= 332

bxxxyy ++=+ 232  
 

1 Prime field operations are defined as integer addition and 
multiplication modulo p. 

The elliptic curve methods of the benchmark use 
parameter files for initializing the curve, setting the base 
point on the curve, and setting the irreducible 
polynomial for multiplication in binary fields. An 
example of the structure of prime fields’ parameter files 
(p192.txt, p224.txt, p256.txt, p384.txt, p521.txt) is given 
in Table 2, while Table 3 gives the typical structure of 
binary field parameter file. For standard cryptography 
benchmarks we use the following notation: 

<benchmark>.<key_length> 

Table 2. Example of the parameter file  
for a prime field GF(p), ||p||=384. 

prime p 
(dec) 

39402006196394479212279040100143613805079
73927046544666794829340424572177149687032

9047266088258938001861606973112319 

curve term 
b (hex) 

b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8
141120314088f5013875ac656398d8a2ed19d2a85c

8edd3ec2aef 
base point 
x coord. 

(hex) 

aa87ca22be8b05378eb1c71ef320ad746e1d3b628b
a79b9859f741e082542a385502f25dbf55296c3a545

e3872760ab7 
base point 
y coord. 

(hex) 

3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a
147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d

7c90ea0e5f 
 

Table 3. Example of the parameter file  
for a binary field GF (2283). 

degrees of the 
irreducible 

polynomial terms
283  12   7   5  0 

curve term b 
(hex) 

27b680ac8b8596da5a4af8a19a0303fca97f
d7645309fa2a581485af6263e313b79a2f5 

 base point 
coordinate x 

(hex) 

5f939258db7dd90e1934f8c70b0dfec2eed2
5b8557eac9c80e2e198f8cdbecd86b12053 

base point 
coordinate y 

(hex) 

3676854fe24141cb98fe6d4b20d02b4516ff7
02350eddb0826779c813f0df45be8112f4 

 

 
The following benchmarks are representative of 
commonly used public-key methods:
• dh (Diffie-Hellman key exchange). It reads a prime 

suitable for Diffie-Hellman from a file, calculates 
shared key and writes it into a file. 

• ds (digital signature). It reads three integers 
suitable for generating keys from file, generates 
public and private keys and writes them into files, 
calculates message digest of a file given as 
argument using the private key, writes signature 
into a file, and verifies the signature of the file 
using public key. 

 
                                                                             
2 In case of binary field, an irreducible polynomial is used when the 
degree of multiplication product polynomial is greater than field size. 
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Table 4. Our public-key benchmark suite. 

Benchmark acronym Benchmark name Input set description Example input set 
value 

 

dh Diffie-Hellman key exchange key length 1024 
ec-dh Elliptic curve Diffie-Hellman key exchange elliptic curve parameter file b163.txt 

 

ds Digital signature of a file key length, file to sign  2048, input_small.asc 
ec-ds Elliptic curve digital signature of a file elliptic-curve parameter file, file to sign b163.txt, input_small.asc 

 

rsa RSA encryption/decryption with exponent 
65537 key length, small text file 1024, test.asc 

 

elg ElGamal key generation,  
encryption and decryption  key length, small text file 1024, test.asc 

ec-elg Elliptic curve ElGamal  
key generation, encryption and decryption 

elliptic-curve parameter file, small text 
file p192.txt, test.asc 

 

• rsa (RSA encryption/decryption with exponent 
216+1). Reads 1024-bit public key from a file, 
encrypts file passed as argument, writes ciphered 
text into a file, reads private key from file, reads 
ciphered content from a file and decrypts it using 
private key. 

• elg (ElGamal key generation, encryption and 
decryption). It reads a suitable prime from a file 
and generates a public key and a private key. 
Encrypts file passed as argument, writes ciphered 
text into a file, reads private key from file, and 
finally decirypts the content of a file using private 
key. 

• ec-dh (elliptic curve Diffie-Hellman). It reads 
parameter file for elliptic curve, calculates shared 
key and writes it into a file. 

• ec-ds (elliptic curve digital signature). It reads 
private key and elliptic curve parameters from 
files, calculates message digest of file given as 
argument, writes signature to a file, and 
immediately verifies the signature using the public 
key. 

• ec-elg (elliptic curve ElGamal key generation, 
encryption and decryption). It generates public-
private key pair, encrypts the base point on a 
curve, and then immediately decrypts it. 

The source code of the benchmarks, as well as the 
results of the experiments are available at 
http://www.dii.unisi.it/~giorgi/basicrypt/. 
 
4. Methodology 

The performance evaluation of our public-key 
cryptography benchmarks is done using the sim-
outorder simulators from ARM version of the 
SimpleScalar toolset [Ss97]. The sim-outorder tool 
performs a detailed timing simulation of the modeled 
target. Simulation is execution driven, including 
execution down any speculative path until the detection 
of a fault, TLB miss, or branch misprediction. The 
ARM target of the SimpleScalar set supports the ARM7 
integer instruction set, with the pipeline and memory 
system models for the Intel StrongARM SA-1110 

[Austin02]. 
The simulated processor configuration is modeled after 
Intel ARM Xscale architecture [Intel03], with details of 
configuration given in Table 5. The sim-outorder tool 
was modified to model mini-data (victim) cache of Intel 
XScale architecture, in order to provide more accurate 
memory modeling. 
The benchmark code was compiled using arm-linux gcc 
cross-compiler [Ss02], with optimization O2 enabled. 
We compared the performance of our benchmarks with 
MiBench/Security benchmarks [Guthaus01] (Table 6), 
available at SimpleScalar Web site [Ss02]. MiBench is a 
set of commercially representative, freely available 
embedded programs. It offers different categories of 
real-world embedded applications, among which is the 
security category. MiBench security category is based 
on private-key methods; the only public-key application 
is PGP encryption/decryption, which uses RSA 
algorithm for signing messages. Due to problems in 
execution of PGP decode on SimpleScalar-ARM 
simulator (unimplemented system calls), we simulated 
only PGP encoding; we expect that PGP decode will 
have similar performance [Guthaus01]. To make the 
comparison as close as possible, we also used MiBench 
input files (small ASCII text files) as input for our 
benchmark simulations, where it was applicable. For 
reasons of space, we reported only the results of the 
simulations with shortest keys both for standard and 
elliptic curve methods (e.g. 1024, b163, p192). The 
results of simulations with various key lengths are 
available at http://www.dii.unisi.it/~giorgi/basicrypt. 
When presenting our benchmark statistics (Table 7), 
source lines count included comments. Library files 
actually used in each benchmark are individuated, and 
their source lines counted. Static instruction count is 
obtained by compiling C source and library files with –
S option, which produces assembly files, and by 
counting number of lines in assembly files. Static 
executable size is the number of bytes occupied on disk, 
while all dynamic instruction counts, loads and stores 
are obtained as sim-outorder simulation statistics. 
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5. Workload Characterization 
In this Section, we characterize selected benchmarks 
with particular emphasis on their memory behavior. 
In Table 7, static and dynamic figures for standard 
cryptography algorithms (dh, ds, elg) and their ECC 
equivalent (ec-dh, ec-ds, ec-elg) are reported. 
Additionally, we considered rsa algorithm as a 
commonly used program for public-key 
encryption/decryption. 
To allow a fair comparison, we set the key length at a 
value which implies the same level of security, as 
discussed in Introduction (see Table 1): 1024 bits for 
standard public-key cryptography, 192 bits for prime 
field based ECC, and 163 bits for binary field based 
ECC. 
In order to provide a direct comparison with a widely 
known benchmark suite, we also included the 
MiBench/Security suite in our experimental setup. 
Similarly to Table 7, we report in Table 8 statistics for 
MiBench/Security. In this case, it has to be observed 
that for some applications it would not make sense to 
try a “same-level of security” comparison. For example, 
sha is a hashing algorithm (no key length is involved). 
Moreover the execution time of Blowfish algorithm (bf) 
does not have a great dependence on key length. In fact, 
Blowfish only uses the key (40 to 448 bits) to set up an 
internal “working key” which is a fixed size structure 
[Schneier96]. For Rijndael (rj), we do not have 
knowledge of implementations that use less then 128 
bits as key length. Therefore, the MiBench/Security 
benchmark comparison has to be regarded as reference 
to other algorithms commonly used in security 
applications. 
Initially, we analyzed the type and number of 
operations. Almost all benchmarks (except ec-elg and 
rj) have more than 50% integer ALU operations, 
therefore they are very computation intensive. Using 
ECC involves a lower number of dynamically executed 
instructions (fourth column, Table 7), compared with 
the same statistics for standard cryptography. The 
percentage of memory operations is practically the same 
for ECC algorithms and standard cryptography (Figure 
3). 
The number of memory references is higher in standard 
cryptography than in ECC (last two columns, Table 7), 
but a further analysis is needed to see if they really 
contribute to the total execution time. In fact, the actual 
performance of these benchmarks depends also on the 
characteristics of instruction and data access patterns. In 
particular, branch prediction schemes could have 
different impact on performance. In Figure 4, 5, 6, and 
7 we analyzed these factors. 
Branch prediction is one of the factors influencing 
instruction pattern generation. We simulated three 
different schemes to see if we can achieve any 

performance improvement: not taken, an 8k 2-level 
predictor, and an 8k bimodal predictor. All predictors 
used a 2k BTB except the not taken strategy. Figure 4 
shows the results for these schemes. The most efficient 
predictor is the bimodal. We used this predictor in the 
rest of our study. 
In Figure 5 – on the left – where we selected 24 cycles 
for memory latency and 1KB for Level-1 Instruction 
Cache and 1KB for Level-1 Data Cache, it appears that 
ECC algorithms take comparable time to execute than 
their corresponding standard version. 
When memory latency is increased to 96 cycles (right 
side of the Figure 5) the execution time is always higher 
for ECC algorithms than in the case of standard 
methods. 
In  Figure 5, we separated the contribution to execution 
time due to memory stall (upper portion of bars). 
Memory stalls account for a high percentage of the 
execution time. For example, in case of 96 cycles, more 
than 80% for ec-dh and ec-elg and more than 60% for 
ec-ds. This means that a particular care has to be taken 
for the memory subsystem, when considering the 
implementation of ECC algorithms. This is particularly 
true for mobile systems such as PDA or wireless 
phones, where memory could be not very fast and 
caches have a small size due to power constraints.  
Even if ECC uses a lower number of memory 
operations, the working set is larger or the locality of 
instruction and data accesses is somewhat worse than 
in standard cryptography. 

 
Table 5. Simulated architecture. 

 
Table 6. MIBENCH/SECURITY benchmarks. 

 

Fetch queue (instructions) 4 
Branch prediction 8k bimodal, 2k 4-way BTB

Fetch & Decode width 1 
Issue width 1 (in  order) 

ITLB 32-entry, fully associative 
DTLB 32-entry, fully associative 

Functional units 1 int ALU, 1 int MUL/DIV 
Instruction L1 cache 32 kB, 32-way 

Data L1 cache 32 kB, 32-way 
L1 cache hit latency 1 cycle 
L1 cache block size 32 B 

L2 cache none 
Mini-data cache 2 kB 

Memory latency (cycles) 24 , 96 
Memory bus width (bytes) 4 

Benchmark 
acronym 

Benchmark  
name 

Input set 
description 

Input set value 

bf.enc Blowfish encrypt file to encrypt input_small.asc
bf.dec Blowfish decrypt file to decrypt output_small.enc
rj.enc Rijndael encrypt file to encrypt input_small.asc
rj.dec Rijndael decrypt file to decrypt output_small.enc
sha SHA file to hash input_small.asc

pgp.enc PGP encode small text file  test.asc 
pgp.dec PGP decode small text file test.enc 
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Both latter problems can be overcome through the use 
of larger caches. Therefore, we considered a more 
detailed analysis of the caches. As our goal is to analyze 
this situation in the case of embedded systems, we setup 
typical configurations of XScale processor, with only 
Level-1 Instruction+Data split caches and no Level-2 
cache. 
To analyze the reasons of the higher stall time of Figure 
5, we report in Figure 6 a detail of the Data and 
Instruction MPI in the case of 1-Kbyte caches. The 
Misses-Per-Instruction (MPI) metric is useful as it 
provides a figure that is directly proportional to the CPI 
(Cycles Per Instruction) contribution due to memory 
stall [Kessler91]. To determine appropriate caches for 
these algorithms, we considered cache sizes from 256-
bytes through 32 kB (Figure 7). 
The cache size range is appropriate for our case as the 
working set size is rather small (as typical in embedded 
systems applications [Guthaus01]).  

For a 32K-bytes cache size the MPI approaches zero.  
To reduce the execution time, we should have at least 
16 kB of instruction cache and 2 kB of data cache 
available for these applications. 
 If the constraints of our system design required a 
slower (lower-power) main memory, the stall time due 
to memory access could be even higher (Figure 5, right 
portion, where main memory latency is 96 cycles). 
For MiBench/Security, we observe that private-key 
algorithms (bf and rj) have a much higher number of 
data misses (Figure 6, 1 kB cache size), while the 
public-key based pgp.enc nicely compares with same 
values as the standard cryptography benchmarks that we 
selected. For Instruction misses, MiBench private-key 
algorithms (bf, rj) compare more directly with ECC 
algorithms rather than with standard public-key 
methods (dh, ds, elg).  
 

 
Table 7. Public-key benchmark statistics (cache size 1 kB, memory latency 24, optimization O2). 

Instruction count Dynamic executable size 
(bytes) Benchmark name 

Source lines 
(application 

+app_library) static 
(application+app_library) dynamic 

Static 
executable 
size (bytes) text data 

Loads dynamic Stores dynamic 

dh.1024 59/8365 214/20226 57,229,355 117,865 257,916 33,874,376 21,312,670 12,908,525 
ec-dh.b163 99/10821 349/30884 23,101,446 120,094 258,236 33,874,792 6,288,459 3,782,031 
ec-dh.p192 89/9356 306/21217 37,766,470 119,738 258,204 33,874,744 13,506,830 8,688,365 

ds.1024 246/8522 806/20773 116,430,745 119,473 311,188 33,928,020 38,270,187 26,441,914 
ec-ds.b163 330/10978 1157/31431 88,948,893 122,285 312,036 33,928,948 25,523,628 18,783,618 
ec-ds.p192 330/9513 1009/24701 109,024,645 121,069 311,796 33,928,724 34,748,326 25,005,446 
rsa.1024 215/8365 776/20226 30,812,587 118,319 232,038 33,848,504 11,147,041 6,824,826 
elg.1024 192/8365 699/20226 231,072,055 118,127 259,388 33,876,060 87,473,709 52,744,618 

ec-elg.b163 99/10821 384/30884 74,021,406 118,363 258,332 33,874,920 18,339,259 11,276,216 
ec-elg.p192 97/9356 333/21217 71,062,489 118,395 258,284 33,874,904 18,048,378 11,258,092 

 

 
Table 8. MIBENCH/SECURITY: Benchmark statistics (cache size 1 kB, memory latency 24, optimization O2). 

Instruction count Dynamic executable size 
(bytes) Benchmark name Source lines 

static dynamic 

Static 
executable 
size (bytes) text data 

Loads dynamic Stores dynamic 

bf.enc  2,302 7,749 52,410,681 968,691 190,900 33,808,760 19,971,638 17,391,227 
rj.enc  1,773 12,134 24,907,400 998,449 199,364 33,874,440 10,829,945 3,789,546 
sha 269 793 13,286,108 955,216 187,540 33,801,380 2,296,237 963,951 
pgp 34,858 73,244 39,105,600 1,451,988 217,088 450,560 8,609,025 4,690,129 
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Figure 3. Dynamic instruction class profile. Figure 4. Branch prediction rates  per 1000 

instructions for several schemes. 
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Figure 5. Total execution time (cache 1kB + 1kB) with memory latency of 24 and 96 cycles. 
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Figure 6. Instruction and data cache misses per 1000 instructions (L1 cache 1+1 KB) 

and comparison with MiBench. 
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Figure 7. Instruction and data cache misses per 1000 instructions. 
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6. Related Work 
There is an intensive research ongoing in improving 
the efficiency of elliptic curve operations, as well as 
their performance analysis. A workload 
characterization of some public-key and private-key 
algorithms, including their elliptic-curve equivalents 
for binary polynomial fields is found in [Fiskiran02]. 
They characterize operations in Diffie-Hellman, 
digital signature, and ElGamal elliptic curve methods, 
and demonstrate that all these algorithms can be 
implemented efficiently with a very simple processor. 
[Hankerson00] presents an extensive and careful study 
of the software implementation of NIST-
recommended elliptic curves over binary fields. In 
[Gupta02], the authors give the first estimate of 
performance improvements that can be expected by 
adding ECC support in SSL protocol.  
In [Guthaus01] MiBench is compared with SPEC2000 
benchmarks, which characterize a workload for 
general-purpose computers. The common 
characteristics of security applications are low cache 
miss rate, more than 50% integer ALU operations, and 
low level of parallelism. In [Milenkovic03], MiBench 
suite and SimpleScalar simulator for ARM target are 
used for a performance evaluation of typical cache 
design issues for embedded systems. 

7. Conclusions 
The main contributions of our paper are: i) setup of 
kernel benchmark set for studying elliptic curve and 
standard public-key methods and ii) studying the 
performance of public-key methods in embedded 
environments. 
We found that using ECC cryptography involves a 
higher number of dynamically executed instructions. 
However, the locality of instruction and data accesses 
is worse than in standard cryptography. 
Instruction and data locality matters to ECC 
performance and appropriate caches should be 
adopted in order to keep total execution time at 
acceptable levels. The importance of memory stall and 
thus the importance of appropriate caches is more 
relevant in the case of ECC cryptography than in the 
case of standard cryptography. Branch mispredictions 
do not affect performance significantly, as the 
percentage of branch instructions is decreased.  
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