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Abstract—In the context of Cyber-Physical Systems (CPSs),
Single Board Computers (SBCs) could provide adaptivity
for various present and future applications, and permit
scalability through clusters of SBCs while possibly save energy
consumption. In this paper, we explore energy efficiency of a
Zynq Ultrascale+ based board developed in the context of the
AXIOM project. While an entire framework based on the Zynq
Ultrascale+ is still in progress, the board is already available
and capable of running a full Linux OS and it is possible
to measure energy consumption. We demonstrate a possible
architecture based on DataFlow-Threads (DF-Threads), a novel
execution model, on the Zynq Ultrascale+ platform, in order to
assess the energy efficiency of DF-Threads. We measured the
power consumption, while the RAW and RDMA message types
were transceived through board-to-board interconnects.

Index Terms—Cyber-Physical Systems, Reconfigurable Sys-
tems, FPGA Programming, Thread Level Parallelization, Energy
Evaluation

I. INTRODUCTION

Embedded processing encircles relatively every application
that exist in our lives which incorporates a wide assortment of
hardware and software stages, from exceptionally basic ones
to extremely complex ones, depending on the application
[1]. Essentially, due to the steadily increasing interests in
performance led by market, it is necessary to explore in high
performance architectures for embedded computing.

In the context of the AXIOM project [2]–[5] it was realized
that there is presently an extreme fragmentation of both
devices and tools for embedded processing. Specifically,
when more complicated functionalities are required, the
entire system must be revised and a new tool-chain must
be adopted. Thus, our goal was to permit the programmers
to simply deploy the device with a possibly standard and
open-source tool-chain based on a full Linux OS software
distribution.

An important contribution of the AXIOM was the
fabrication of an SBC board (”The AXIOM board”) based on
FPGA and embedded processor, e.g. Zynq Ultrascale+ [6] and
its features are: i) a high speed reconfigurable interconnect

for board-to-board communication; and ii) a user-friendly
programmable environment, which allows us both to off-load
partly program algorithms into accelerators (on programmable
logic) and, at the same time, to distribute the computation
workloads across boards via DataFlow-Threads, a novel
execution model [7]–[9] and iii) the possibility of deploying
an open-source tool-chain based upon easy to program
concept like OmpSs [10], an OpenMP extension [11], [12].
However, scaling the performance of a computing system
while retaining easy programmability is still on the headlines
[13]. Additionally, tool-chains require to be integrated with
suitable high level synthesis tools in order to have a higher
control of the programmable logic [14], [15].

In addition, multi-processor system-on-chips (MPSoCs) are
currently well-adopted, but the handling of many threads is
still a source of a lot of inefficiencies. Their management must
consider not only the order of execution and the quantum
time per thread, but also the associations of allocating a
thread on a given core. This aspect begins to be serious as
the entire system grows in complexity, memory hierarchies,
interconnects and distributed resources. In this paper, we
propose to reduce such inefficiencies by using an efficient
execution model named DF-Threads [7]–[9]. We explore
energy efficiency of the AXIOM board when it comes to
the distribution of DF-Threads among the AXIOM boards
through well-defined and high speed board-to-board message
types.

The contribution of this work is to extract the power
metrics of the AXIOM board (based on the Zynq U+ FPGA)
in respect to the distribution of DF-Threads through different
type of board-to-board messages.

The remainder of this paper is structured as follows: In
Section II we discuss some related work; in Section III we
present the general architecture of the AXIOM board and
its soft-IPs like the DF-Threads Scheduler (DFS) [8] on the
Zynq Ultrascale+ platform; in Section V and IV, we show
some experiments regarding the power consumption of when
it comes to transceive high speed board-to-board messages
and finally, we conclude the paper.
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II. RELATED WORK

Data-flow execution models have been reviewed recently
[7], [16], [17] as they promise an elegant way to effectively
move data from one computational thread to another one
[18]–[20]. Importantly, in such models, the computations can
be mostly performed in a producer-consumer manner, while
for mutable shared data, the memory model offered by Data-
flow Threads (DF-Threads) [7] is enclosing Transactional
Memory [21], which is a concurrency control mechanism
analogous to database transactions for controlling access to
shared memory by replacing locks with atomic execution
units, so that user can focus on where atomicity is required.

In this context, the TERAFLUX project [22]–[25]
accomplished such data-flow modality while extending to
multiple nodes which are executing seamlessly through an
appropriate memory semantic [7], [26]. In this semantics
a compound of consumer-producer patterns [27], [28] and
transactional memory [21], [29] allows a novel combination
of data-flow paradigm and transactions in order to solve
the consistency issues across nodes, where each node is
supposed to be cache-coherent like in a classical multi-core.
Additionally, such distributed systems could support fault-
tolerance [30], [31], and in this context a data-flow thread
may be re-executed without harming the computing program
since the thread inputs are maintained before scheduling the
corresponding thread.

Nowadays, FPGAs are widely used in prototyping
Embedded Computers and more recently have become a
significant component as the accelerators in the HPC and
CPS field, since they undertake tasks with higher reliability,
reconfigurability and energy efficiency [32]. Reconfigurable
logics like FPGAs propose outstanding ways to boost specific
functions, but need enough tools in order to moderate the
complicated programming [32]–[34].

Considering reconfigurable computing platform based on
FPGAs, many works have offered solutions to address the
issues of dynamic allocation of tasks to general-purpose-
multi-core processors [35], [36], or reconfigurable logic
[37]. Nevertheless, these approaches have been effectively
investigated only on single and multi-core super-scalar
architectures.

Recent papers discuss further the details of DF-Threads
hardware framework [3], [5], [38]–[40], the software layers
[41], [42] and application use-cases [4], [43], [44].

III. DF-THREAD MANAGEMENT FOR THE ZYNQ
ULTRASCALE+

Recently, there has been a huge exertion to move forward
general programming models with thread management such
as P-threads, Cilk, OpenMP. But in most of these models,
synchronization and distribution of data between cores of
different nodes need to be managed manually by programmers

and imposes an extra effort [10].

Instead, DF-Threads execution model proposes better
scalability by re-managing the distribution of threads based
upon the data-flow paradigm [7], [45]. For this reason, a
Distributed Thread Scheduler (DTS) is offered by [8], which
is a hardware implementation of DF-Threads modality.
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Fig. 1: Proposed scalable DF-Threads architecture mapped on the
Zynq Ultrascale+ based board like AXIOM board (left side). The
detailed bock designs for each node (board) are depicted at the right
side. The proposed DF-Threads scheduler is completely designed
on PL (dotted circle). U+: Ultrascale+, PS: Processing System, PL:
Programmable Logic, NIC: Network Interface Card [46].

Figure 1 shows the block designs exploited to materialize
and map the DF-Threads management on the PL part of
the Zynq U+ platforms as an individual soft IP. DF-Threads
Scheduler (DFS) is tightly coupled (i.e., based on the AXI
Stream protocol and proper buffering) to the NIC [46] module
to be able to transceive appropriate messages in order to
distribute the workloads among the network.

Since the DFS is offloaded on the PL, all overheads
regarding the thread management are reduced. As such,
this leads to better energy efficiency and accelerates the
distribution tasks through the PL as well.

IV. METHODOLOGY

A reliable and precise method to measure and monitor the
power consumption of the system is necessary in order to
enable optimization towards the energy efficiency. Addition-
ally, the ability to estimate power consumption in a design
is mandatory for efficient part selection and system reliability.
Referring to the AXIOM board, there are specifically dedicated
eight INA219 power monitor integrated circuits to monitor the
crucial power rails of the board, and are reported by Table I.
These INA219 ICs communicate with the FPGA through an
I2C bus connected to the PS, and more detailed information
on the INA219 can be found in [47].

In order to distribute threads among the network, there are
two types of transceiving messages: 1) RAW and 2) Remote



TABLE I: AXIOM board’s power supply rail adopting dedi-
cated power monitors

Power supply rail
Nominal
Voltage [V] Description

VCC INTFP 0.85 PS full-power domain supply
voltage

VCCINT 0.85 PS internal power supply

INTFP DDR 0.85 PS DDR controller and PHY
supply voltage

1V2 DDR PS 1.2 PS DDR supply
1.2V DDR PL 1.2 PL DDR supply

MGTAVCC 0.9 Analog supply voltage for GTH
transceiver

MGTAVTT 1.2 Analog supply voltage for GTH
transceiver termination circuits

Direct Memory Access (RDMA). Data of RAW messages are
sourced by the DFS, while RDMA ones include a certain por-
tion of memory to be moved between source and destination
nodes. As a result, we measure power consumption of the
AXIOM board for each of these message types, when the
DFS is running at run-time using NIC. For this purpose, two
boards have been interconnected, and one board is configured
in server mode (DFS is sender) and the other in client mode
(DFS is receiver). As such, a tool is designed to acquire power
data by making IOCTL calls to the INA219s’ driver that return
the current value sunk from each monitored rail.

V. EXPERIMENTS

In order to extract power values for the crucial rails of the
board, we performed the experiments while DFS issues the
RAW and RDMA messages of 1000M length in 10 cycles.
The duration of the test was 240s with 200ms sampling time.
Essentially, the total power consumption of the board remained
between 1W and 1.6W (sum of the seven crucial power
rails). Figure 2 illustrates the maximum power variations for
the crucial voltage rails during RAW and RDMA transactions.

As can be seen from Figure 2, the MGTAVTT voltage
rail has the highest power consumption since the gigabit
transceivers’ termination circuits with 1.2V supply voltage
sink larger amount of current. The average power consumption
in client mode has 10.15% larger value in comparison with
server mode due to an extra processing effort to re-compose
the acknowledge message and send it back to the server.
Moreover, since in our DFS implementation we did not utilize
any access to the PL DDR (we access to the PS DDR), the
average power consumption for the 1V2 DDR PL voltage
rail remained below 5.5mW.

Finally, comparing power consumption between RAW and
RDMA message, the RDMA message type consumes in aver-
age 9.7% less than the RAW message types. This arises from
the extra dedicated logics to deal with data of RAW messages

while for RDMA messages, the data are efficiently moved to
the PS DDR by using the Xilinx Data Mover soft IP.
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Fig. 2: Maximum variations in power consumption of crucial
voltage rails for the Zynq Ultrascale+ when RAW and RDMA
messages are issuing.

VI. CONCLUSION

In this paper, we present the deployment of Scalable
Embedded Computers by using DF-Threads to distribute
computations across multiple Zynq Ultrascale+ based board
(The AXIOM board). We discussed several solutions in the
High-Performance Computing domain as well as embedded
worlds. We proposed a DF-Threads Scheduler which permits
efficient scalability across the boards, and we presented some
power measurements in the context of the AXIOM project
as well. In order to be able to optimize the efficiency of the
board, we explored the energy consumption of the important
voltage rails while transceiving is performed across the nodes
by the DFS.

Future work invokes further exploration of power con-
sumption for more number of nodes (boards) with more
benchmarks.

VII. ACKNOWLEDGMENT

The authors would like to thank with gratitude Davide
Catani of SECO (s.r.l) [48] for his support in developing the
experiments. This work has been partially supported by the
European Commission under the AXIOM H2020 project (id.
645496) and HiPEAC (id. 779656).

REFERENCES
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