3" Mediterranean Conference on Embedded Computingm."'l MECO - 2014

Budva, Montenegro

Dynamic Power Reduction in Self-Adaptive
Embedded Systems through Benchmark Analysis

Alberto Scionti', Stamatis Kavvadias®, Roberto Giorgi'

'Dept. of Information Engineering and Mathematics, University of Siena, Siena, Italy
{scionti, giorgi}@dii.unisi.it
2Technological Educational Institute of Crete, Dept. of Computer Science, Iraklio, Crete Greece
kavadias@cs.teicrete.gr

Abstract—Discovering the most appropriate reconfiguration
instants for improving performance and lowering power
consumption is not a trivial problem. In this paper we show the
benefit in terms of performance gain and power reduction of
the dynamic adaptation (e.g., cache size, clock frequency, and
core issue-width) of an embedded platform, through a design
space exploration campaign, and focusing on a relevant case
study. To this end, we analyze a set of benchmarks belonging
to the embedded application domain with the aim of
illustrating how the appropriate selection of reconfiguration
instants can positively influence system performance and
power consumption. Experimental results using the cjpeg
benchmark show that power consumption can be reduced by
an average of 22%. Our methodology can be used to create a
set of run-time management policies for driving the adaptation
process.

Keywords - reconfigurable architectures, low-power
electronics, embedded software
L INTRODUCTION
Nowadays, high-performance embedded systems

integrate an ever larger number of cores and functionalities
into a single silicon die. In this context, designers must take
into account specific constraints, such as power
consumption, area occupation, security, resiliency, and clock
frequency (e.g., [4][6]). The Embedded Reconfigurable
Architectures (ERA) project [1][13][14][15] aims at
providing a high-performance energy-efficient embedded
architecture, leveraging on the adaptability of the platform to
the specific application features and requests. Run-time
adaptation to the application specifics requires the capability
of discovering points in the execution, where the platform
may try to change its configuration improving performance
and energy efficiency. Benchmark suites have been proposed
to verify the performance of a given architecture with respect
to a specific domain (e.g., [2][3]). Further, benchmark suites
and work-loads analysis represents a starting point from
which discovering the best set of reconfiguration points, and
developing run-time approaches for platform adaptation.

Prior research works characterized benchmark suites
using both microarchitecture— dependent (MD) metrics and
microarchitecture— independent (MI) metrics. In [5], the
authors have analyzed benchmark applications using
different techniques (e.g., trace simulation, statistical
analysis, etc.) with the aim of capturing inherent program

62

characteristics. Although, less accurate considerations can be
obtained by considering only MD metrics, these results can
provide useful information for dynamically reconfiguring the
system, by correlating the application behavior with
energy/power consumption. Synthetic benchmarks are much
easier to develop, maintain, and use with respect to real
applications. While they replicate some workload
characteristics into a synthetic trace, they are not able to
capture the complexity of a real world application and its
correlation with the energy/power consumption [5].

By selecting proper metrics to characterize applications,
it is possible to determine and predict program phases.
Several studies [7][8] showed that changes in the application
phases (i.e., a portion of the executed code that repeats itself
in time and that is characterized by a similar behavior on the
target architecture) represent the best points where the
platform may try to adapt to the changed application
behavior. Several approaches have been proposed to
discover program phases. Sembrant et al. [8] proposed an
efficient on-line phase detection and classification approach,
based on common features exhibited by modern
microprocessors, such as performance counters. Other works
attempt to automatize, speed up, and to extend the analysis
process to a parallel architecture [7]. Proposed
methodologies are quite general, but rely on hardware
features which are not always available on embedded
systems, and lack of correlation among the discovered
phases and the energy/power consumption measured during
application execution.

The main contributions of this paper are as follows. First,
we provide the designers with a set of benchmarks (ERA
Benchmark Suite — EBS [14][15]) and ranges where it is
possible to observe the variation of relevant architecture
parameters (issue-width, cache-size, frequency) useful for
exploring the design space of run-time reconfiguration of the
system. Then, we illustrate our methodology for analyzing
the benchmark applications, determining the best appropriate
reconfiguration points, and evaluating the impact on the
platform adaptation. To this end, we give a detailed analysis
of a representative case study to show how to apply the
above knowledge in order to achieve a reduction of dynamic
power. Finally, we show the main results of an extensive
analysis of the reconfiguration potentials that are available in
the EBS benchmark applications.

3" Mediterranean Conference on Embedded Computingm."'n

II. THE ERA BENCHMARK SUITE

In the context of the ERA project, we have put together a
set of interesting benchmarks for the embedded domain (i.e.,
the ERA Benchmark Suite — EBS [14][15]). To this purpose,
we selected representative applications, by choosing a new
generation mobile device as the main scenario. Specifically,
the benchmarks include image (¢jpeg, djpeg, susan), video
(x.264, mpeg?2), and audio (ac3) processing applications, as
well as a security (EC-DS) and a text recognition (tesseract)
application. All the selected applications are written in
C/C++ language. We compiled all the EBS applications for
the X86 64 ISA (matching the architecture of the host
simulation machine), with no specific compiler optimizations
(we used the open source gcc compiler). It is worth to
observe that although X86 64 is widely adopted in high-
performance architectures, low-power versions specifically
designed for embedded systems are available, such as in
current smartphones and tablet computers (e.g., Intel ATOM
architecture [12]).

III. METHODOLOGY

Our methodology aims at discovering the most
appropriate points where the system can dynamically change
its configuration, thus gaining in terms of performance or
power reduction. To this purpose, we deeply analyze the
behavior of the target benchmark applications. This analysis
requires the ability of measuring several metrics, such as
overall performance (instructions per cycle — IPC), power
consumption, etc. Different metrics can be classified into two
categories: microarchitecture— dependent (MD) and
microarchitecture— independent (MI) measurements. For this
work we chose to deeply analyze applications behavior using
MD metrics, which allow us to simply correlate application
behavior to the power consumption and performance of the
platform. Specifically, we considered caches, TLBs and
branch predictor miss rates, overall performance (IPC),
energy and power consumption. For our experiments we
used the COTSon/SimNow simulator, which have been
considerably developed in the TERAFLUX project [9][11].
Our workloads present only integer and control instructions,
including memory read and write operations.

Our methodology for the identification of most suitable
reconfiguration points exploits an on-line analysis approach.
The output of the objdump tool allows us to associate a
compile-time identifier (ID) of functions, loops, and library
code structures (we statically linked all the required libraries
with the benchmark binary) with their virtual program
counter (PC). During simulations all the selected MD metrics
are tracked, allowing the construction of a code-structure
vector (CSV) containing the frequency of each specific
metric.

Providing these frequency vectors to Simpoint tool, we
are able to detect application phases. By comparing phases
with other metrics, we can identify potential reconfiguration
points for the target architecture. This methodology can be

63

MECO - 2014 Budva, Montenegro

further extended in order to detect reconfiguration points at
run-time. Finally, to extract detailed power measurements
per interval, we modified McPAT tool, so that it can run
repeatedly with different inputs, but calculate the targeted
architecture only the first time, since this is the most time
consuming part of its execution. This analysis may guide the
design of a set of policies that allows the programmer to
select among quality-of-service (QoS) classes for different
parts of the code, through a specific API.

TABLE 1 — Architecture configuration parameters and their related ranges.

Feature Description Configuration

Core X86 64 ISA, in-order 2-4-8 wide

L1 caches I/D 16KB each, 2-way, 64B lines, |

' allocate, WB, single-port
. 64KB, 128KB,
L2 cache Ui;“t;‘e_d’ lrf'way’ allocate, WB, | »5cxp 512KB,
single-po IMB

TLBs I/D 40-entry each, 4KB pages -

Main Mem. 70ns latency -
800MHz, 1.1GHz,

Clock Freq. Fixed for each run 1.4GHz, 1.7GHz,
2.0GHz

A. Configuration Space Exploration

We considered a large experimental campaign using
different architecture configurations. Table 1 shows the
range of configurations we considered.

Although in this work we focus on the adaptation of a single
core embedded system, all the considerations can be further
extended to include heterogeneous multi-cores, specialized
accelerators, and a network-on-chip (NoC) communication
infrastructure.

2 500

PG
;
;
POMYER [m W]

200

0 i i ; i ; i i ; i 0
29 50 T3 100 125 150 175 ann 225 2 b
10 IMSTRUCTIONSINTERYALS

Fig. 1 — Simulation of the ¢jpeg application. The blue dashed line shows
the IPC, while the red line shows the corresponding power consumption.

To reduce simulation time we only modeled processor width
and memory access stalls, but not instruction dependences
and resource conflicts. This overstates both performance
increase with processor width, and with frequency, as the
model assumes infinite parallelism in the application, unless

3" Mediterranean Conference on Embedded Computingm."'n

interrupted by cache misses. Although this leads to a non-
perfectly cycle-accurate characterization of the applications,
it gives us a fast and robust way for the understanding of
reconfiguration choices.

IV. SIMULATION RESULTS

A. Analysis of a case study

To demonstrate the effectiveness of our methodology we
considered the following case study. We analyzed the
simulation results of the ¢jpeg application over the full range
of system configurations (see table 1). Figure 1 shows the
general behavior of the test case application running on a
system equipped with a 8-wide superscalar processor, a L2
cache with a size of 1024kB, and running at full speed (i.e.,
2GHz). Blue dashed line represents the IPC values sampled
over the simulation intervals, while the red line shows the
power consumption in each interval, expressed in mW.
Detailed analysis of the performance curve (blue dashed
line) shows the presence of three regions where the IPC
value falls down from an initial value of 1.5 to 0.5, and 1.2.
These three regions can be observed respectively between
75M and 100M of instructions, between 100M and 125M of
instructions, and between 175M and 180M of instructions.
Red line shows three inverse power consumption peaks in
correspondence of these low performance regions.

Similarly, figure 2 shows the application behavior in terms
of cache misses. The figure is composed of several graphs
presenting the cache misses split in read and write misses
over the application execution. The analysis of the plots
clearly shows that read misses are dominant in this case.
Blue peaks represent the regions in the benchmark execution
where the performance (IPC) decreases due to the negative
impact of the cache misses of read operations. Since the
peaks are not affected by changes in the cache configuration,
we can advocate that these regions represent good candidates
for dynamic system reconfiguration.

- B (=~ -}

=
L2 Conctn it Mo, L2 Comcing Pl Vi '

.

Mistat.
IR

BT

i

T 559 ALY PTG A YRS
oo, vt 3 Prec. Wit © Free Vi g
10U IrateGon Infovah

Fig. 2 — L2 cache misses for the ¢jpeg application running on a processor
with different issue-width and cache size (clock speed constant at 2GHz).

Change in the system configuration, by decreasing the clock
speed, reducing the L2 cache size, and lowering the issue-
width of the processor, results in a performance curve with
similar poor performance regions, located in the same

64

MECO - 2014 Budva, Montenegro

instruction intervals. Simpoint simulation confirms that the
three selected instruction intervals are good candidate points
for the system reconfiguration. Since these points are
characterized by a similar performance reduction,
irrespective of the system configuration, we decided to
reconfigure the architecture with the aim of lowering its
overall power consumption.

Figure 3 depicts the test case application behavior in terms of
system performance (IPC) and power consumption, when
running on the adapted system. Whenever the system enters
in one of the three reconfiguration regions, it automatically
reduces the clock speed to 800MHz, reduces the processor
issue-width to 2, and disables part of the L2 cache (i.e., the
total size of the L2 cache becomes equal to 64kB). As
expected, the IPC curve still presents low performance
peaks, but power consumption is greatly reduced. More
precisely, the power consumption in the candidate
reconfiguration regions decrease from 425mW to 175mW.
The global power consumption reduction is confirmed by
computing the average value for the overall simulation. In
the first case (i.e., fixed configuration with a system
equipped with a 8-wide processor, 1024kB L2 cache, and
running at 2GHz), the average performance value is IPC,,, =
1.19, while the average power consumption is Py, = 530mW.

2 T T T T . . 600

: : 500
__*___*___._,

400

IPC
;
POWER [my)

—a0n

L P S S T B A SR S i}
25 50 i o0 125 150 175 200 225 2 b
10M INSTRUCTIONS INTERVALS

Fig. 3 — A demonstration of power reduction for the ¢jpeg application. The
blue dashed line shows the IPC, while the red line shows the corresponding
power consumption.

In the second case, we are able to reduce the power
consumption to the average value P,,,= 413mW, or about a
22% reduction, while the performance remain in line with an
average value of IPC,, = 1.24. Of course, this analysis
neglects side effects of the reconfiguration, such as in the
case of the L2 cache resize. In the real system, resizing the
cache may imply the need of the system to reload part of the
memory regions that have been evicted after the cache size
reduction. Similarly, we neglected possible impacts of the
operating system in both performance and power
consumption after run-time reconfiguration. From this
viewpoint, the previous analysis allows us to determine a
limit in the performance gain or in the power reduction
associated to the run-time reconfiguration.

3" Mediterranean Conference on Embedded Computingm."'n

B. Extension to other EBS benchmarks

Benchmark analysis can be further extended to the other
EBS applications. Due to limited space, we present
simulation results for the image processing (susan), video
processing (mpeg?2), audio processing (ac3), and text
recognition (fesseract) applications. Figure 5 presents four
graphs, each of them depicts the average energy dissipation
(measured in mJ) over the entire benchmark execution for
different system configurations. Each graph shows a general
trend: energy dissipation and execution time (measured in
ms) decrease when the configuration moves from low speed
to high speed clock signals, and when the cache size and the
issue-width increase (i.e., power consumption increases). As
stated for the cjpeg application, there are regions in the
applications execution that are not affected by configuration
changes (not shown due to space limitations). Correlating
this information with the power/energy execution profiles we
can select appropriate reconfiguration points.

el ey —— 2am Pe ey —+— gy ——
ZEgT === ZEgT =28
q @ ‘_. 3008 T 1w \\ k]
i= -\s.. g wo| NN L
=i, Senco [=HES VRN R 5y |-
' = b
EER AT RS B S
i « = P = 4
= e IIGIGICEICIOacSa NS RaEC ' ®
T TR
e TG NN EROM SR
1astucien el i i o
oy Estogy b & .
B Faae — gl —— Mr-;ll!'+ oy ey ——
- -==.: mﬁ: o e e

8 L

W
£\
,..%i!
£ |
k
N

é’,”
\J
&J

5!!9;5! aiﬁ:;éiﬂii F.-i

HOWG TUOMEZ WOOMH: 1N MMGER
"0 Instweten Inferealy

B bttt bedovesks

Fig. 4 — Average energy dissipation (mJ) and execution time (ms) over
instruction intervals for 4 representative EBS benchmark applications.

Our analysis, confirmed by Simpoint simulations, shows that
for the regions in the application execution interval in which
the performance are not affected by configuration changes, is
possible to dynamically reduce power dissipation by forcing
the platform to assume minimal configurations. The
observed trends confirm the expected behavior, but also
validate the advantages showed in the dynamic changes of
figure 1 and figure 3. For these cases we also expect that the
execution time will be not significantly affected.

V. CONCLUSIONS

Benchmark characterization and phase classification have
been largely used to statically optimize the configuration of
the embedded systems. Further, they can be exploited to
dynamically change the system configuration. Monitoring
specific metrics over the application execution, it is possible
to discover potential points where a change in the system

65

MECO - 2014 Budva, Montenegro

configuration is beneficial in terms of performance gain or
power consumption reduction. In this paper we have shown
that these points are present in representative embedded
applications. Analyzing real applications on different system
configurations is possible to determine a limit in the
performance gain and power reduction, helping the designer
to optimize the system from a dynamic perspective.

ACKNOWLEDGEMENTS

We would like to thank Dr. Nikola Puzovic for his
propaedeutic work for this paper. This work is partly
supported by the European Commission in the context of the
ERA (Embedded Reconfigurable Architectures)
collaborative project n0.249059 (FP7) and the TERAFLUX
project n0.249013.

REFERENCES

[1] Wong S., Carro L., Kavvadias S., Keramidas G., Papariello F.,
Scordino C., Giorgi R., Kaxiras S., Embedded Reconfigurable
Architecture, Proc. of the ACM International Conf. on Compilers,
Architectures and Synthesis for Embedded Systems (CASES), 2012.

[2] D. Guthaus, et al.; MiBench: A free, commercially representative
embedded benchmark suite, Workload Characterization, IEEE
International Workshop on, 2001.

[3] Poovey, J.A., et al.; A Benchmark Characterization of the EEMBC
Benchmark Suite, Micro, IEEE, vol.29, no.5, Sept.-Oct. 2009.

[4] Basile C., Di Carlo S., Scionti A., FPGA-based remote-code integrity
verification of programs in distributed embedded systems, IEEE
Transactions on Systems, Man and Cybernetics Part C: Applications
and Reviews, 2012.

[5] Hoste, K.; Eeckhout, L.; Microarchitecture-Independent Workload
Characterization, Micro, IEEE, vol.27, no.3, May-June 2007.

[6] Di Carlo S., Prinetto P., Scionti A., A FPGA-based reconfigurable
software architecture for highly dependable systems, Proc. of the
Asian Test Symposium (ATS), 2009.

[7] Perelman E., et al., Detecting phases in parallel applications on shared
memory architectures, In Int. Parallel and Distributed Processing
Symposium, 2006.

[8] Sembrant, A.; Eklov, D.; Hagersten, E.; Efficient software-based
online phase classification, Workload Characterization (IISWC),
2011 IEEE International Symposium on, 6-8 Nov. 2011.

[9] Portero A., Simulating the future kilo-x86-64 core processors and
their infrastructure, Simulation Series 44 (2 BOOK).

[10] M. B. C. Alioto, et al.; Exploiting Locality to Improve Leakage
Reduction in Embedded Drowsy I-Caches at Same Area/Speed, IEEE
Int. Symp. On Circuits and Systems (ISCAS), May 2010.

[11] Giorgi R., et al., TERAFLUX: Harnessing dataflow in next
generation teradevices, Microprocessors and Microsystems, Available
online Apr. 2014, http://dx.doi.org/10.1016/j.micpro.2014.04.001

[12] Zahir, R.; Ewert, M.; Seshadri, H., "The Medfield Smartphone: Intel
Architecture in a Handheld Form Factor," Micro, IEEE, 2013.

[13] Wong S., Carro L., Rutzig M., Matos D. M., Giorgi R., Puzovic N.,
Kaxiras S., Cintra M., Desoli G., Gai P., Mckee S. A., Zaks A.; ERA:

Embedded Reconfigurable Architectures; Springer New York, Aug
2011.

[14] Puzovic N., et al., A Multi-Pronged Approach to Benchmark
Characterization, IEEE Int. Conf. on Cluster Computing, Heraklion,
Greece, Sept. 2010.

[15] Wong S., et al., Early Results from ERA — Embedded Reconfigurable
Architectures, IEEE INDIN, Lisbon, Portugal, 2011.

